# **RE-AL**igning Language to Visual Objects with an Agentic Workflow



Yuming Chen, Jiangyan Feng, Haodong Zhang, Lijun Gong, Feng Zhu, Rui Zhao

Qibin Hou#, Ming-Ming Cheng, Yibing Song#





## **Key Point**



#### Agentic Workflow: from Assistant to Data Flywheel

- Agent is not only a *simple assistant* but also can establish workflows that serve as **flywheel** to sustaining **high-value data assets** across AI industries
- In this paper, we show an application of agentic workflow to demonstrate its potential...



Manus<sup>[1]</sup>: Recent Viral Agent Assistant

[1] Manus: https://manus.im/



Our agentic workflow proposed to provide data with **high Visual-Language alignment quality** 



#### • Method

- Example
- Experiments



### Language-based Object Detection

• The essence of *Object Detection* is to Align Language Data to Visual Objects





## Visual-Language Alignment

• **Quantity & Diversity of Visual-Language data for alignment is important!** 



#### Training Data Quantity:

- *OWL*<sup>[2]</sup>: **10B** images
- *GDINO*<sup>[3]</sup>: **5.8M** images
- *APE-B*<sup>[4]</sup>: **2.6M** images

#### **Collection Challenge:**

- Objects are **harder** to label than whole images
- The costs for large-scale data are **extremely high**

#### **Expression Diversity**

- Training Dataset: Simple
- Testing Dataset: **Complex**

| 0      | mniLabel <sup>[5]</sup> |      | low      |          |   |  |
|--------|-------------------------|------|----------|----------|---|--|
| Images | Method                  | AP   | AP-categ | AP-descr |   |  |
|        | RegionCLIP [53]         | 2.7  | 2.7      | 2.6      |   |  |
|        | Detic [55]              | 8.0  | 15.6     | 5.4      | L |  |
| Ξ      | MDETR [20]              | -    | -        | 4.7      |   |  |
| A      | GLIP-T [29]             | 19.3 | 23.6     | 16.4     | L |  |
|        | GLIP-L [29]             | 25.8 | 32.9     | 21.2     | L |  |
|        | FIBER-B [12]            | 25.7 | 30.3     | 22.3     |   |  |
| _      |                         |      |          |          | 1 |  |

• Introducing *VLM* for expression generation is promising, but...

Yuming Chen, www.fishworld.site

[1] Radford et al., Learning Transferable Visual Models From Natural Language Supervision. ICML.2021.
[2] Minderer et al., OWL-ViT: Open-World Object Detection with Vision Transformers. ECCV 2022.
[3] Liut et al. Grunding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. ECCV 2024



## Hallucination of VLM

**Small object** and **General Prompt** cause *VLM* to misperceive objects, damaging **Quality** 







**<Prompt>:** What is the object in the red box? <**Response>:** The object is a blue and red *hat worn by a* young girl.

<**Prompt>:** What is the object in the red box? <**Response**>: The object is *a flag* with a design that resembles the Union Jack.

<**Prompt>:** Describe the person in the red box. <**Response>:** The person is a woman with long hair wearing a *black top*.

<**Prompt>:** What is the color of person's clothes. <**Response>:** The person is wearing <u>a black and white</u> striped shirt, dark pants, and black shoes.

(d) With Specified Prompt

(a) For Small Object

(b) With Extended Crop

(c) With General Prompt

By adopting **appropriate operations**, hallucination can be alleviated



#### • Method

- Example
- Experiments

## Method



## **Agentic Workflow**

• To improve the alignment quality of large-scale VL data, Real-LOD involves cycles with

**3 steps**: *Planning*, *Tool use*, and *Reflection* 



## Method





#### object itself



object and surrounding areas !





whole image

**Object Highlight** 



**Object Crop** 

**Extended Object Crop** 



designed for **Real-LOD** 

After analyzing the **misalignment** caused by

hallucination, 5 states/actions are specifically



- Method
- Example
- Experiments

## Example



## Input



| The second | <b>Object Category</b>                                                                                                                                                                                                              | horse                                                                                    |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | <b>Bbox Coordinates</b>                                                                                                                                                                                                             | [223.07, 267.79, 101.47, 59.39]                                                          |  |  |  |  |  |
|            | Image Caption                                                                                                                                                                                                                       |                                                                                          |  |  |  |  |  |
| P          | The image depicts a group of people on horseback in a forested area. The person riding the horse in the red box is wearing a blue shirt and dark pants, and appears to be leading the group. The horse is brown and is walking on a |                                                                                          |  |  |  |  |  |
|            | dirt path. The riders are w                                                                                                                                                                                                         | vearing backpacks, suggesting they might be on a                                         |  |  |  |  |  |
|            | visible through the canop<br>of the image is one of out                                                                                                                                                                             | by, indicating it's a sunny day. The overall atmosphere tdoor adventure and exploration. |  |  |  |  |  |

Can you specify if the raw expression that **brown horse walking on sand** is referring to the target object? If not, please modify it to a correct expression.

#### Output

The expression **brown horse walking on sand** is a wrong one, and a correct expression could be **brown horse walking on dirt path with rider in blue shirt and hat, leading the way**.

## Example



## First Cycle

| Planning   | Reasoning: The expression describes a brown horse that is walking on sand, but the image caption mentions the horse is walking on a dirt path, and there is no mention of sand in the caption. Based on this information, I reason the state is 4 where I am uncertain of object relation with surroundings. So I plan for Action 4 where I can crop a local object region in this image for VLM to further reperceive. The description of VLM supplements the current information for me to conduct a more thorough expression examination. Action: [{'Tool_name': 'VLM', 'Tool_parameters': {'Prompt': 'Questions:1. Is the horse walking on sand or on a dirt path?', 'Image editing': 'extended object crop.'}] Response: I will consult with a VLM to acquire supplement information that will enable me to evaluate the current expression more thoroughly. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 😿 Tool use | VLM output: 1. The horse is walking on a dirt path, not on sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reflection | <b>Feedback</b> : The expression { <u>brown horse walking on sand</u> } describes a wrong relation (on sand) of the horse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Example



## Second Cycle

X



| ina | <b>Reasoning</b> : Based on the feedback, <u>I reason the state is 2 where I am certain the expression {<i>brown horse</i>}<br/><i>walking on sand</i>} is wrong. So I plan for Action 2 where I use an LLM to rewrite the expression, and then check</u>   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ing | the correctness of the new expression.<br>Actions: [{'Tool_name': 'LLM', 'Tool_parameters': {'Prompt: Image Caption,, Response,'}}]<br>Response: The expression { <i>brown horse walking on sand</i> } contains flaws, now I will first leverage the LLM to |
|     | create an alternative expression for you.                                                                                                                                                                                                                   |
| use | <b>LLM output</b> : New Description: { <i>brown horse walking on dirt path with rider in blue shirt and hat, leading the way</i> }                                                                                                                          |



Tool

**Feedback**: The expression {<u>brown horse walking on dirt path with rider in blue shirt and hat, leading the</u> <u>way</u>} describes the object category 'horse' and provides similar context to the caption.

## **Final Cycle**

| Planning | Reasoning: Based on the feedback, I reason the state is 1 where I am certain the new expression { <i>brown horse walking on dirt path with rider in blue shirt and hat, leading the way</i> } is correct. So I plan for Action 1 to stop. Actions: []<br>Response: The expression { <i>brown horse walking on sand</i> } is a wrong one, and a correct one could be { <i>brown horse walking on dirt path with rider in blue shirt and hat, leading the way</i> }. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



- Method
- Example
- Experiments



Location



15



#### **Ablation Study on OmniLabel Benchmark**

| Test subset | Training data type | #Img | AP-des | AP-des-pos | AP-des-S | AP-des-M | AP-des-L |
|-------------|--------------------|------|--------|------------|----------|----------|----------|
|             | А                  | 933k | 21.2   | 59.4       | 31.3     | 21.1     | 18.6     |
| COCO        | В                  | 695k | 22.2   | 59.4       | 32.4     | 21.9     | 19.4     |
|             | С                  | 863k | 24.2   | 59.6       | 35.2     | 24.2     | 21.1     |
|             | А                  | 933k | 27.6   | 43.1       | 39.8     | 25.5     | 17.9     |
| O365        | В                  | 695k | 28.5   | 43.7       | 40.2     | 26.2     | 18.5     |
|             | С                  | 863k | 32.4   | 48.5       | 47.5     | 30.0     | 21.3     |
| OI          | А                  | 933k | 30.5   | 43.0       | 37.2     | 30.3     | 23.2     |
|             | В                  | 695k | 31.4   | 43.7       | 38.1     | 31.2     | 24.0     |
|             | С                  | 863k | 33.5   | 44.9       | 42.2     | 32.9     | 24.8     |

A: "raw expression"; B: "raw expression with filter"; C: "raw expression with filter + Real-LOD";



## **OmniLabel Benchmark**

| LOD Method                 | #Img  | AP-des | AP-des-pos | AP-des-S | AP-des-M | AP-des-L |
|----------------------------|-------|--------|------------|----------|----------|----------|
| GLIP (Swin-L)              | 17.5M | 21.2   | 33.2       | 37.7     | 18.9     | 10.8     |
| mm-GDINO (Swin-B)          | 12M   | 20.8   | 33.1       | 31.9     | 19.8     | 14.1     |
| FIBER (Swin-B)             | 4M    | 22.3   | 34.8       | 38.6     | 19.5     | 12.4     |
| <b>Real-Model (Swin-B)</b> | 0.18M | 36.5   | 52.1       | 54.4     | 33.2     | 25.5     |

## **DOD Benchmark**

| LOD Method                 | #Img  | Full | Presence | Absence |
|----------------------------|-------|------|----------|---------|
| GDINO (Swin-B)             | 5.8M  | 20.1 | 20.7     | 22.5    |
| mm-GDINO (Swin-B)          | 12M   | 24.2 | 23.9     | 25.9    |
| APE-B (ViT-L)              | 2.6M  | 30.0 | 29.9     | 30.3    |
| <b>Real-Model (Swin-B)</b> | 0.18M | 34.1 | 34.4     | 33.2    |



#### **RefCOCO/g/+ Benchmark**

| LOD Mothed                  | #Img  | RefCOCO |       |       | RefCOCO+ |       |       | RefCOCOg |        |  |
|-----------------------------|-------|---------|-------|-------|----------|-------|-------|----------|--------|--|
| LOD Method                  |       | val     | testA | testB | val      | testA | testB | val-u    | test-u |  |
| APE-A (ViT-L)               | 2.0M  | 34.2    | 34.8  | 36.1  | 33.5     | 32.3  | 36.0  | 38.9     | 40.5   |  |
| <b>Real-Model (Swin-B)</b>  | 0.18M | 74.0    | 79.6  | 66.0  | 76.4     | 83.1  | 68.5  | 80.8     | 81.2   |  |
| GDINO* (Swin-B)             | 5.8M  | -       | -     | -     | 73.6     | 82.1  | 64.1  | 78.3     | 78.1   |  |
| APE-B* (ViT-L)              | 2.6M  | 84.6    | 89.2  | 80.9  | 76.4     | 82.4  | 66.5  | 80.0     | 80.1   |  |
| <b>Real-Model*</b> (Swin-B) | 0.24M | 91.3    | 93.1  | 88.0  | 85.4     | 90.3  | 78.6  | 88.4     | 89.0   |  |

## **OVDEval Benchmark**

\* indicates that the model employs RefCOCO/g/+ for training

| LOD Method                 | #Img  | color | material | position | relationship | negation | avg  |
|----------------------------|-------|-------|----------|----------|--------------|----------|------|
| GLIP (Swin-L)              | 17.5M | 6.7   | 15.8     | 48.1     | 33.2         | 51.8     | 31.1 |
| OmDet (ConvNext-B)         | 1.1M  | 24.5  | 22.5     | 47.7     | 51.8         | 55.8     | 40.4 |
| FIBER (Swin-B)             | 4M    | 9.4   | 17.7     | 48.1     | 33.2         | 58.1     | 33.3 |
| <b>Real-Model (Swin-B)</b> | 0.18M | 25.7  | 22.5     | 59.3     | 41.9         | 68.4     | 43.6 |



## Visualization

Query: "This item is used to keep warm in colder weather."



Query : "Woman in wedding dress next to a man in suit."



Query : "Pillow placed at the head of the bed."





Query : "These two people each have a pink surfboard."



**Query :** "The fire extinguisher on the left."



Query : "Cows that are laid down."







(a) GLIP-L

(b)

(b) APE-B (c) mm-GDINO

(d) Our



## **Thanks For Watching!**



GitHub



Main Page



Wechat



Yuming Chen, www.fishworld.site



chenyuming@mail.nankai.edu.cn